Beigl et al. published in EMBO reports

25. Juli 2024

BCL-2 and BOK regulate apoptosis by interaction of their C-terminal transmembrane domains

Tobias B Beigl, Alexander Paul, Thomas P Fellmeth, Dang Nguyen, Lynn Barber, Sandra Weller, Benjamin Schäfer, Bernhard F Gillissen, Walter E Aulitzky, Hans-Georg Kopp, Markus Rehm, David W Andrews, Kristyna Pluhackova & Frank Essmann

Abstract

The Bcl-2 family controls apoptosis by direct interactions of pro- and anti-apoptotic proteins. The principle mechanism is binding of the BH3 domain of pro-apoptotic proteins to the hydrophobic groove of anti-apoptotic siblings, which is therapeutically exploited by approved BH3-mimetic anti-cancer drugs. Evidence suggests that also the transmembrane domain (TMD) of Bcl-2 proteins can mediate Bcl-2 interactions. We developed a highly-specic split luciferase assay enabling the analysis of TMD interactions of pore-forming apoptosis effectors BAX, BAK, and BOK with anti-apoptotic Bcl-2 proteins in living cells. We conrm homotypic interaction of the BAX-TMD, but also newly identify interaction of the TMD of anti-apoptotic BCL-2 with the TMD of BOK, a peculiar pro-apoptotic Bcl-2 protein. BOK-TMD and BCL-2-TMD interact at the endoplasmic reticulum. Molecular dynamics simulations conrm dynamic BOK-TMD and BCL-2-TMD dimers and stable heterotetramers. Mutation of BCL-2-TMD at predicted key residues abolishes interaction with BOK-TMD. Also, inhibition of BOK-induced apoptosis by BCL-2 depends specically on their TMDs.Thus, TMDs of Bcl-2 proteins are a relevant interaction interface for apoptosis regulation and provide a novel potential drug target.

Publication Link

Zum Seitenanfang